Modelagem molecular da enzima Uridina 5’-difosfato-glicuronil-transferase (E.C.2.4.1.17) humana: uma proposta didática
Resumo
Algumas doenças humanas estão associadas à captação hepática de bilirrubina, caracterizada por uma elevação sérica da bilirrubina não conjugada. Nessa afecção, a atividade da uridina 5’-difosfato-glicuronil-transferase (UGT1A1) é reduzida devido a uma mutação na região promotora ou no gene UGT1A1, responsável pela transformação da bilirrubina em metabólitos solúveis e excretáveis. Assim, o objetivo deste trabalho foi modelar a estrutura da proteína UGT1A1 pelo método da homologia, utilizando softwares de acesso livre, como proposta pedagógica para o estudo de proteínas. Nesse sentido, a estrutura da UGT1A1 foi modelada partir da sequência de aminoácidos e os parâmetros de qualidade do modelo analisados. A partir do modelo foram identificados tópicos importantes para o ensino de estrutura de proteínas, viabilizando uma metodologia ativa para a aprendizagem do estudante.Referências
ARNOLD, K.; BORDOLI, L.; KOPP, J.; SCHWEDE, T. The SWISS-MODEL Workspace: A web-based environment for protein structure homology modelling. Bioinformatics, v.22, p.195-201, 2006.
BENKERT, P.; BIASINI, M.; SCHWEDE, T. Toward the estimation of the absolute quality of individual protein structure models. Bioinformatics, v.27, n.3, p.343-50, 2011.
BENKERT, P.; KÜNZLI, M.; SCHWEDE, T. QMEAN Server for Protein Model Quality Estimation. Nucleic Acids Res., v.37(Web Server issue), p.W510-4, 2009.
BENKERT, P.; TOSATTO, S.C.E.; SCHOMBURG, D. QMEAN: A comprehensive scoring function for model quality assessment. Proteins: Structure, Function, and Bioinformatics, v.71, n.1, p.261-277, 2008.
BESA, S.; CALVO, C.I.; HARRIS, P.R. Evolución prolongada em síndrome de Crigler-Najjar tipo I. Rev. Med. Chile, v.142, n.1, p.109-113, 2014.
BHATTACHARYA, D., CHENG, J. 3Drefine: Consistent Protein Structure Refinement by Optimizing Hydrogen Bonding Network and Atomic Level Energy Minimization. Proteins: Structure, Function, and Bioinformatics, v.81, n.1, p.119-131, 2012.
BHATTACHARYA, D., CHENG, J. i3Drefine software for protein 3D structure refinement and its assessment in CASP10. PLOS ONE, v.8, n.7, p.e69648, 2013.
BHATTACHARYA, D., NOWOTNY, J., CAO, R., CHENG, J. 3Drefine: an interactive web server for efficient protein structure refinement. Nucleic Acids Research, Web Server Issue, 2016.
BIASINI, M.; BIENERT, S.; WATERHOUSE, A.; ARNOLD, K.; STUDER, G.; SCHMIDT, T.; KIEFER, F.; CASSARINO, T.G.; BERTONI, M.; BORDOLI, L.; SCHWEDE, T. SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information Nucleic Acids Research, v.42(W1), p.W252-W258, 2014.
BOLAM, D.N.; ROBERTS, S.; PROCTOR, M.R.; TURKENBURG, J.P.; DODSON, E.J.; MARTINEZ-FLEITES, C.; YANG, M.; DAVIS, B.G.; DAVIES, G.J.; GILBERT, H.J. The Crystal Structure of Two Macrolide Glycosyltransferases Provides a Blueprint for Host Cell Antibiotic Immunity. Proc.Natl.Acad.Sci., v.104, n.13, p.5336-41, 2007.
BONNETT, R.; DAVIS, E.; HURSTHOUSE, M.B. Structure of bilirubin. Nature, v.262, p.327–8, 1976.
CHOTHIA, C.; LESK, A.M. The relation between the divergence of sequence and structure in proteins. The EMBO Journal, v.5, n.4, p.823-826, 1986.
COMBET, C.; BLANCHET, C.; GEOURJON, C.; DELÉAGE, G. NPS@: Network Protein Sequence Analysis. TIBS, v.25, n.3, p.147-150, 2000.
DELEAGE, G.; ROUX, B. An algorithm for protein secondary structure prediction based on class prediction. Protein Eng., v.1, n.4, p.289-294, 1987.
FARHEEN, S.; SENGUPTA, S.; SANTRA, A.; PAL, S.; DHALI, G.K.; CHAKRAVORTY, M.; MAJUMDER, P.P.; CHOWDHURY, A. Gilbert’s syndrome: High frequency of the (TA)7 TAA allele in India and its interaction with a novel CAT insertion in promoter of the gene for bilirubin UDP-glucuronosyltransferase 1 gene. World J. Gastroenterol., v.12, n.14, p.2269-2275, 2006.
FRISHMAN, D.; ARGOS, P. Incorporation of non-local interactions in protein secondary structure prediction from the amino acid sequence. Protein Eng., v.9, n.2, p.133-142, 1996.
GARNIER, J.; OSGUTHORPE, D.J.; ROBSON, B. Analysis of the accuracy and implications of simple methods for predicting the secondary structure of globular proteins. J. Mol. Biol., v.120, n.1, p.97-120, 1978.
GEOURJON, C.; DELEAGE, G. SOPM: a self-optimized method for protein secondary structure prediction. Protein Eng., v.7, n.2, p.157-164, 1994.
GIBRAT, J.F.; GARNIER, J.; ROBSON, B. Further developments of protein secondary structure prediction using information theory. New parameters and consideration of residue pairs. J. Mol. Biol., v.198, n.3, p.425-443, 1987.
GUERMEUR, J.; OSGUTHORPE, D.J.; ROBSON, B. Analysis of the accuracy and implications of simple methods for predicting the secondary structure of globular proteins. J. Mol. Biol., v.120, n.1, p.97-120, 1978.
GUERMEUR, Y. PhD Thesis - Combinaison de classifieurs statistiques, Application a la prediction de structure secondaire des proteines, 1997.
GUEX, N.; PEITSCH, M.C.; SCHWEDE, T. Automated comparative protein structure modeling with SWISS-MODEL and Swiss-PdbViewer: A historical perspective. Electrophoresis, v.30, n.S1, p.S162-S173, 2009.
GUPTA, N.; SINGH, T.; CHAUDHARY, R.; GARG, S.K.; SHANDHU, G.S.; MITTAL, V.; GUPTA, R.; BODIN, R.; SULE, S. Bilirubin in coronary artery disease: cytotoxic or protective? World Journal of Gastrointestinal Pharmacology and Therapeutics, v.7, n.4, p.469-476, 2016.
KANG, S.J.; LEE, C.; KRUZLIAK, P. Effects of serum bilirubin on atherosclerotic processes. Ann. Med., v.46, n.3, p.138-47, 2014.
KIEFER, F.; ARNOLD, K.; KÜNZLI, M.; BORDOLI, L.; SCHWEDE, T. The SWISS-MODEL Repository and associated resources.
Nucleic Acids Res, v.37, p.D387-D392, 2009.
KING, R.D.; STERNBERG, M.J. Identification and application of the concepts important for accurate and reliable protein secondary structure prediction. Protein Sci., v.5, n.11, p.2298-310, 1996.
KUNDUR, A.R.; SINGH, I.; BULMER, A.C. Bilirubin, platelet activation and heart disease: A missing link to cardiovascular protection in Gilbert's syndrome? Atherosclerosis, v.239, n.1, p.73-84, 2015.
LAAKKONEN, L.; FINEL, M. A molecular model of the human UDP-glucuronosyltransferase 1A1, its membrane orientation, and the interactions between different parts of the enzyme. Mol. Pharmacol., v.77, n.6, p.931-9, 2010.
LI, C.; WU, Q. Adaptive evolution of multiple-variable exons and structural diversity of drug-metabolizing enzymes. BMC Evolutionary Biology, v.7, n.69, p.1-20, 2007.
LOVELL, S.C.; DAVIS, I.W.; ARENDALL III, W.B.; DE BAKKER, P.I.W.; WORD, J.M.; PRISANT, M.G.; RICHARDSON, J.S.; RICHARDSON, D.C. Structure validation by Calpha geometry: phi,psi and Cbeta deviation. Proteins: Structure, Function & Genetics, v.50, p.437-450, 2002.
MEECH, R.; MACKENZIE, P.I. Structure and function of uridine diphosphate glucuronosyltransferases. Clin. Exp. Pharmacol. Physiol., v.24, n.12, p.907-915, 1997.
MOULT, J.; FIDELIS, K.; KRYSHTAFOVYCH, A.; SCHWEDE, T.; TRAMONTANO, A. Critical assessment of methods of proteins structure prediction (CASP) – round x. Proteins, v.82, n.2, p.1-6, 2014.
NELSON, D.L.; COX, M.M. Principles of Biochemistry. 5 ed. New York: W H Freeman & Co, 2008. 1158p.
NOGALES, D.; LIGHTNER, D.A. On the structure of bilirubin in solution. 13C[1H] heteronuclear Overhauser effect NMR analyses in aqueous buffer and organic solvents. J. Biol. Chem., v.270, p.73–77, 1995.
OMASITS, U.; AHRENS, C.H.; MÜLLER, S.; WOLLSCHEID, B. Protter: interactive protein feature visualization and integration with experimental proteomic data. Bioinformatics, v.30, n.6, p.884-6, 2014.
PROSDOCIMI, F.; CERQUEIRA, G.C.; BINNECK, E.; SILVA, A.F.; REIS, A.N.; JUNQUEIRA, A.C.M.; SANTOS, A.C.F.; NHANI JÚNIOR, A.; WUST, C.I.; CAMARGO FILHO, F.; KESSEDJIAN, J.L.; PETRETSKI, J.H.; CAMARGO, L.P.; FERREIRA, R.G.M.; LIMA, R.P.; PEREIRA, R.M.; JARDIM, S.; SAMPAIO, V.S.; FOLGUERAS-FLATSCHART, A.V. Bioinformática: manual do usuário. Biotecnologia Ciência & Desenvolvimento, v.29, p.12-25, 2012.
RICHARD, B.; DAVID, B. Ab initio protein structure prediction: progress and prospects. Annual review of biophysical and biomolecular structures, v.30, p.73-88, 2001.
RITTER, J.K.; CHEN, F.; SHEEN, Y.Y.; TRAN, H.M.; KIMURA, S.; YEATMAN, M.T.; OWENS, I.S. A novel complex locus UGT1 encodes human bilirubin, phenol and other UDP-glucuronosyltransferase isozymes with identical carboxy termini. J. Biol. Chem., v.267, p.3257–61, 1992.
RODWELL, V.W.; BENDER, D.A.; BOTHAM, K.M.; KENNELLY, P.J.; WEIL, P.A. Bioquímica ilustrada de Harper. 30 ed. Porto Alegre: AMGH, 2017, 832p.
ROST, B.; SANDER, C. Prediction of protein secondary structure at better than 70% accuracy. J. Mol. Biol., v.232, n.2, p.584-99, 1993.
SANTOS FILHO, O.A.; ALENCASTRO, R.B. Modelagem de proteínas por homologia. Química Nova, v.26, n.2, p.253-259, 2003.
SIGRIST, C.J.A.; CERUTTI, L.; HULO, N.; GATTIKER, A.; FALQUET, L.; PAGNI, M.; BAIROCH, A.; BUCHER, P. PROSITE: a documented database using patterns and profiles as motif descriptors. Brief. Bioinform., v.3, p.265-274, 2002.
THE UNIPROT CONSORTIUM. UniProt: the universal protein knowledgebase. Nucleic Acids Research, v.45, p.D158-D169, 2017.
TORRES, B.B.; GALEMBECK, E. Proposta de uma metodologia para o ensino da estrutura e função das proteínas na disciplina de bioquímica. Revista Brasileira de Ensino de Bioquímica e Biologia Molecular, v.1, p.X1-X19, 2009.
U.S. NATIONAL LIBRARY OF MEDICINE (Estados Unidos) (Org.). Fact Sheet: Genetics Home Reference. 2003. Disponível em: <https://www.nlm.nih.gov/pubs/factsheets/ghr.html>. Acesso em: 09 jan. 2017.
VANWAGNER, L.B.; GREEN, R.M. Evaluating elevated bilirubin levels in asymptomatic adults. JAMA, v.313, n.5, p.516-517, 2015.
WAGNER, K.H.; WALLNER, M.; MÖLZER, C.; GAZZIN, S.; BULMER, A.C.; TIRIBELLI, C.; VITEK, L. Looking to the horizon: the role of bilirubin in the development and prevention of age-related chronic diseases. Clinical Science, v.129, n.1, p.1-25, 2015.
WANG, X.; CHOWDHURY, J.R.; CHOWDHURY, N.R. Bilirubin metabolism: Applied physiology. Current Paediatrics, v.16, p.70–74, 2006.
Autores que publicam nesta revista concordam com os seguintes termos:
- Autores mantém os direitos autorais e concedem à Revista EIXO o direito de primeira publicação, com o trabalho licenciado simultaneamente sob uma licença Creative Commons Attribution License até 5 anos após a publicação, permitindo o compartilhamento do trabalho com reconhecimento da autoria do trabalho e publicação inicial nesta revista.
- Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
- Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado (Veja O Efeito do Acesso Livre).